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A robust estimator introduced by Beran (1977a, 1977b) ?Mich i based on the minimum

Hellinger distance between a projection model density and a non ametric sample density is studied

empirically. An extensive simulation provides an estimate/ the small sample distribution and

supplies empirical evidence of the estimator performance for normal location-scale model. Empirical

robustness is also investigated, with performance competitve with that obtained from M-estimators

and Cramer-von Mises minimum distance estimators. /he mioimum Bellinger distance estimator is

shown to be an exception to the usual perception that robust estimator cannot achieve full effciency.

Beran also introduced a goodness-of-fit statistic, H., based on the minimized lellinger distance

between a member of a parametric family of densities and a nonparametric density estimate. We

investigate the statistic H (the square root of I1I) as a test for normality when both location and scale

are unspecified. Empirically derived critical values art given which do not require extensive tables.

The power of the statistL fl is compared with four other widely used tests for normality. ARC-"
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1. INTRODUCTION

Robust estimators are those which are insensitive to small deviations from the assumptions,

usually at the expense of not being optimal at the true model. Bickel (1978) describes robustness as

"paying a price in terms of efficiency at the (true) model in terms of reasonably good maximum MSE

over the neighborhood." Beran(1977a, 1977b) introduced a minimum distance estimator based on the

tfellinger distance between a member of a parametric family of densities and a nonparametric density

estimator. This estimator, called the minimum Hellinger distance estimator (MHDE), was shown by

Beran and also by Stather (1981), under suitable conditions, to be consistent, asymptotically normal

and asymptotically fully efficient. Tamura and Boos (1986) studied the MHDE in the multivariate

setting. The theoretical results obtained by all of these authors indicate that the MHDE plays a special

role in the issue of efficiency versus robustness in that it obtains robustness without sacrificing

efficiency at the true model. However, the strength of the Hellinger metric, and the fact that the

MIIDE has an unbounded influence curve, causes some concern that the actual robustness of the

MIDE is minimal. Although Beran, Stather, and Tamura and Boos provided some limited empirical

evidence concerning the performance of the estimator, the available numerical results are limited. In

this article we present an extensive numerical examination of the MHDE in the univariate setting in

order to provide a better understanding of its potential usefulness.

Beran (1I77b) suggested using the square of the minimized Hellinger distance, H, as a statistic

for testing the goodness-of-fit of the parametric family. Beran concluded that the statistic H2 is

relatively insensitive to minor failures such as a few outliers. Bickel (1978) claims, apparently based on

Beran's comment, that a goodness-of-fit test using the Hellinger distance does not have detecting power

outside the Hellinger neighborhood. In this paper we reexamine the use of the Hellinger metric for

purposes of obtaining a goodness-of-fit statistic in order to better understand the power attainable

using this approach.

In Section 2 we provide background material concerning the MHDE. Secti ,n 3 is devoted to

implementation issues for computation of the MHDE. Density estimation and numerical maximization

are discussed and guidelines are given for calculating the MHDE. An extensive empirical study

described in Section 4 investigates the robustness and small sample properties of the estimator and

compares the MIIDE with maximum likelihood, minimum distance and M-estimators. In Section 5

we propose the use of the statistic 11, the square root of Beran's H, and we discuss motivation for its

use and the derivation of critical values. In Section 6 we present the results of a simulation study

comparing the power of H with four commonly used tests for normality for a wide range of alternative

distributions.
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2. BACKGROUND AND ESTIMATOR DEFINITION

Let X1, X2 , ... . X, denote a random sample from a population with distribution function G,

and let Gn denote the cmpirical distribution function, i.e.

Gn(t) = n-l[ (Xi < t

where I denotes the indicator function. Also, let {0' Oce} denote a family of distributions, called

the projection model, involving the vector valued parameter 9. A minimum distance estimate of 0 is

usually defined to be the value of 0 for which the distance between Gn and F, is minimized, where the

distance is based on a measure of distance between distribution functions.

The Hellinger distance between two absolutely continuous distributions F and G is the distance

between the square roots of the densities f=dF/dp and g=dG/dp defined by

i

H(f, g) [Jf - )d . (2.1)

The Hellinger distance is independent of the choice of measure, so we shall use Lebesgue measure. ItI. I

will be useful to note that minimizing H(fg) in (2.1) is equivalent to maximizing f f2(t) g2 (t) dt. The

MItDE is defined in terms of a functional T over the set of densities. Specifically, for a density g, we

define T(g) as the value of the parameter 0 which minimizes the distance between g and '5,O i.e.

H(fT(g , g) = min H(f0 , g). (2.2) . ,

A MIiDE of 0 is the random variable T(gn) where gn is a suitable nonparametric density estimator

based on the sample. If there is not a unique solution to (2.2) then T(gn) will denote any one of the

minimizing values. We base our implementation of the MHDE on kernel density estimators of the 0

form E0

-1 n r \

gn(y) = (nhn)- w(y- Xi)/hnj (2.3)

Availability 0odefl
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where w is a density on the real line and {hn} is a sequence of constants which converge to 0 at an

appropriate rate.

Beran gives conditions which guarantee the existence of MHD estimators for E compact and

discusses the extension of the result for noncompact E. Tamura and Boos (1986) prove consistency

and asymptotic normality of T(gn) under conditions which include the two parameter normal family.

Their asymptotic result requires that gn be a kernel density estimator with nonrandom hn.

3. IMPLEMENTATION DETAILS

In this section we discuss the major steps of density estimation and numerical maximization in

the evaluation of the MIHDE. It should be noted that throughout the paper we will use the normal

projection model with both location and scale unknown.

Density Estimation

We follow Beran and choose the Epanechnikov kernel (Epanechnikov, 1967) as the kernel

density estimator for the MHDE because of its optimal properties in density estimation. The

Epanechnikov kernel has the form:

w(x) = .75(1-z 2 ), -1 < z < 1 (3.1)

= 0, elsewhere.

The sequence of constants, {hn), must be chosen to complete the definition of the kernel

density estimator. The optimal sequence (see, for example, Schucany and Sommers, 1977) based on

estimating the density g(y) at the mean of the normal distribution is

hn = a (152/n)0 "2 = 2.161an - 0 "2. (3.2)

The optimization criteria used is to minimize Elf [g(x) - gn(x)] 2 dx}. This sequence yielded both a

bias and a large variance in scale estimation for the MIDE, apparently not emphasizing the tails of gn

as much as desired for optimal MHDE performance.

It is not evident that a simple function involving g and gn can be minimized to yield optimal

hn values for the MIHDE, although the expression given above does suggest a functional form for the

dependence of hn on the variance of g. Because analytic efforts to choose an appropriate form for hn
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have been unfruitful, an empirical study was conducted to determine a functional form for hn for a

normal location-scale model. Based on the form for hn in (3.2), we chose to treat hn ac the product of

a scale estimator, 9n, and a sequence of constants, cn . Throughout this article, the sequence {Sn) of

scale estimators is given by sn = SMAD where SMAD is the sample median absolute deviation given

by SMAD = (median IXi -m l)/ 0 .6745, where m is the sample median. The cn sequence was chosen to

yield an unbiased MHDE scale estimate. This approach did not cause any significant degradation in

the performance of the location estimator because it is relatively insensitive to changes in cn. Values

for cn were obtained for 15 different sample sizes in the range 20 to 1000, using 5000 data sets for each

sample size. The entire process of calculating the cn values was repeated using a different sequence of

random numbers to allow examination of the variability in the procedure. A (log-linear) model of the

form cn=kn p was fit to the resulting values yielding the equation

cn = 2.283 n- 0 .2 8 7 . (3.4)

The R2 for the fit was 0.9937. The replications at each sample size provided the opportunity to do a

lack of fit test. The lack of fit test was not significant at the 0.05 alpha level, thus the functional form

chosen is a reasonable approximation to the unknown true form.

Numerical Maximizat ion

Calculation of the MHDE requires finding the maximum of

I i
fl(t) gn 2 (t) dt (3.5)

with respect to two parameters, the mean and the standard deviation. The iterative, quadratically

convergent, Gauss-Newton method described by Beran (1977b) was implemented for numerical

investigations. This method finds the simultaneous zero's of the partial derivatives of (3.5) with

respect to the parameters being estimated.

A composite Gauss quadrature integration rule was used to evaluate the integrals. The range

of the integrals was divided into 75 subintervals of equal length and then each subinterval was

integrated using a 4 point Gauss quadrature rule. Because the estimator maximizes (3.5) and the

Epanechnikov kernel was used. the integrand is nonzero only over the support of gn(x), i.e., the

interval (X(l)-cns n , X (n)+cnsn) where X(1) and X (n) are the smallest and largest sample values

respectively.
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Normal termination of the iterative solution to (3.5) occurred if both location and scale

estimates differed by less than 10- 4 from the estimate on the preceding step. Tests with a larger

number of integration steps indicated that an approximate accuracy of 10- 4 was being obtained in the

solutions for location and scale.

Sensitivity 12 Starng Values

The sensitivity of the MHDE to starting values was investigated by generating 1000 samples of

size 40 from the standard normal distribution and counting the number of acceptable solutions

obtained using different starting values. The starting location values ranged from -1 to 1 and the

starting standard deviation values ranged from 0.5 to 2. Convergence percentages ranged from 6.2% at

the starting location, standard deviation pair (-1, 0.5) to 99.9% at the starting pair (0,1). Although

the procedure shows to be sensitive to starting values, convergence occurred 100% of the time at this

sample size when the initial values used were the median for location and SMAD for scale. These two

values, denoted by IV, were used as initial values by the iterative MHDE routines and two other

iterative estimators described subsequently.

Other Estimators

Three other estimators were evaluated for comparison with the MHDE. Two of the estimators

are representative of the types of robust estimators currently in use. The Maximum Likelihood

Estimator (MLE) for normal data, i.e., R and the sample standard deviation (with divisor n), S, was

included because its distribution is known theoretically for all sample sizes. Note that S is a biased

est imator.

The second estimator was obtained using the Cramer-von Mises minimum distance technique and

is denoted by CVM. The paper by Parr and Schucany (1980) provides a reference on the Cramer-von

Mises minimum distance estimation technique. The CVM estimator is obtained by choosing 0=(pur)

to minimize

Z FO(X1 ) - (i-0.5)/nI (3.7)

where the X(i ) are sample order statistics and FO denotes the cumulative normal distribution function.

The minimization to find the CVM estimate was accomplished by using the International Mathematics

and Statistics Library (IMSL) subroutine ZXSSQ which implements an iterative nonlinear finite

difference Levenberg- Marquardt least squares method.
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The third estimator was an NI-Estimator (MEST) based on work by Huber (1964). Defining

the function

t if Itl < kH

{kHsgn(t) if Itl > kH

for some constant kH > 0, the M-estimator was obtained by first solving

1F H{( ) - ) /SNIAD} = 0 (3.8)

for the location estimate M. Next, letting Zi = (Xi-P)/'H denote a standardized observation, the

scale estimate, a H , was found by solving

(n-l)- 1 * 'IH(Zi) = B (3.9)
i=l

where B = E[* I(Y)] and Y comes from the standard normal distribution. A value of 1.4 was used for

kH for location estimation which is in the range of values shown to perform well in the Prin-eton

Robustness Study (see Andrews, et. al, 1972). To our knowledge, not much is known about the

optimal selection of kH for scale estimation. Our experience indicates that k H = 1.4 produced biased

estimates, and thus we used k H = 2 so that only a small amount of trimming is being done.

Both the CVM and MEST procedures are iterative in nature. The initial values used for both

procedures were the same as the initial values used in the MHDE iterative solution procedure. In each

case, the convergence criteria was set to obtain an accur;cy rate of about 10- 4 , assuming that

standard normal data was being used.

Computation Time

Computation time for the NIHDE, using an older version of the code which employed

trapezoidal integration, was measured relative to the other estimators by calling a system clock before

and after the call to each estimation subroutine. A new vcrsion of the code runs about 20% faster for

the MHDE than the results reported here. The program was coded in FORTRAN on a CYBER 760

and the pseudo-random number generators used were from the IMSL software. The clock had an

accuracy of approximately 0.01 seconds on each call. Cumulative computation times in seconds are
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given in Table 1 for 5000 replications using standard normal data, where each data set was sorted

before any estimation was done. The times for the subroutine which calculated the intital values (IV)

reflect the use of an ineffecient sort routine which has since been replaced. The MHDE has comparable

computation times at sample size 200 relative to the CVM and 800 for the MEST. Computation time

for the MHDE increased by only about 25 percent as the sample size increased from 20 to 800. This

appears to be due to three effects. First, to evaluate the kernel density at a point y, one has to include

only those sample points, Xi , which satisfy I y-X I < Cnsn . Since cn decreases with increasing

sample size, the number of points which satisfy this condition increases more slowly than the sample

size. Second, as the quality of initial estimates (IV) improves with sample size, less iterations were

required. At sample size 20, about 98% of the solutions were obtained by the 5th iteration. The same

percentage of solutions were reached by 4 iterations at sample size 100, and 3 iterations at sample size

800. Third, the implementation of the MHDE only requires one pass through the data to calculate the

kernel density estimate at the grid points for numerical integration. Both CVM and MEST require a

pass through the entire data set for every iteration. For very large data sets the MHDE can be much

cheaper to compute than the CVM and MEST.

4. EMPIRICAL RESULTS

The empirical study reported in this section was designed to investigate the sm.ll sample

efficiency, small sample distribution, and empirical robustness of the MHDE. The performance of the

Mt1DE is compared with the other estimators described in Section 3.

Sajafl Sample Efficiency

An empirical measure of the efficiency of an estimator relative to the Maximum Likelihood

estimator is obtained from the ratio of MSE's i.e., E=MSE(MLE)/MSE(MHDE). A standard error

estimate for the efficiencies was obtained from the approximate formula (Taylor Series with 2 terms)

for the variance of a ratio of dependent random variables. The efficiencies of the four robust estimators

under consideration are given in Table 2 for a range of sample sizes. The missing entries were not

computed because of long processing times. Standard error estimates are given in parentheses after the

efficiency values. The results show that the MIIDE obtains high efficiency for small sample sizes and

dominates the estimators IV, CVM, and MEST with respect to efficiency at the true model. The

efficiency of the MHDE for location estimation is higher than that for scale estimation. An efficiency

of 0.98 is attained for location estimation at sample size 40, while scale estimation requires samp-e size

700 to obtain the same efficiency. The corresponding asymptotic values (where known) are included on



8

the line headed by "o".

Small Sample Distribution

The simulation runs used to obtain the empirical efficiencies also yielded an empirical

description, given in Table 3, of the small sample distribution of the MHDE. In the empirical

comparison, the MHDE has a larger variance, but less bias (as expected from the choice for cn), than

the MLE for the scale component, while the location components do not appear to differ appreciably.

Location and scale estimates are known tc be independent for the MLE for all sample sizes, while the

relationship is unknown for the MHDE. These resv'ts indicate that location and scale estimates for the

MHDE have a' most a low correlation for sample sizes as small as 20. The low, or possibly

nonexistent, correlation between location and scale could be anticipated because H(f, gn) is invariant

under location and scale changes. Correlations between the estimators for one simulation run using

standara normal data sets of size 40 are provided in Table 4. The MLE and MHDE estimates are

highly correlated.

Empirical Robustness

One method of examining the robustness of an estimator is to calculate the Influence Curve

(IC), (see Pampel, 1974) with the usual inte.rpretation being that a robust estimator will have a

bounded influence curve. A modification of Hampel's definition of the influence curve must be made

for the MHDE (Beran, 1977b) because the minimum Hellinger distance function T(gn) has as its

domain the space of densities rather than the space of distribution functions. Let

f(x; 0, a, z) = (1-a) f(x;0) + a 6z(X) (4.1)

for cf(0,1) and real z where 6 z(x) is the uniform density on the interval (z-A, z+A) where A > 0 is

very small. Define first the quotient (a-IC),

a-IC(z) = {T[f(x; 0, a, z)] - 0} / a

and then the influence curve is defined to be

IC(z) lim a-IC(z) . (4.2)
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For the normal location-scale model (see Beran (1977b) for details) the MHDE has influence curve

IC(z) = [(Z-A, {(z-P) 2 
-

2 + A3/3}/2]. (4.3)

As A-0 the influence curve of the MHDE becomes identical to the unbounded influence curve of the

NILE. Beran (1977b) also shows that for a(0,1)

lim a-IC(z) = 0 (4.4)

so the NIHDE is robust at f(x; 0, a, z) against 100oa% contamination by gross errors at arbitrary real z,

even though the influence curve is unbounded.

Ilampel (1974) claims that the use of the a-IC (before the limit) is preferable to the use of the

influence curve to assess estimator robustness. The limiting form is often used because it is usually

easier to evaluate, and it does not depend on a. The MHDE is an example of an estimator for which

the limiting form does not reliability provide information about the form of the a-IC for a > 0.

The a-IC for the model in (4.1) using the standard normal density for f was obtained by

numerical integration and is plotted in Figures 1 and 2 for several values of a. The form of the a-IC

for both location and scale shows that the influence of an extreme value is diminshed to almost zero by

tie time it is removed by 5 standard deviations from the center of the data. The robustness indicated

by the limit (4.4) should then be attainable for a typical data set; it is not just a mathematical

anomaly.

An empirical estimate r' the a-IC for the MHDE and other robust estimators was generated by

drawing 1000 replications at sample size 40 from the mixture distribution

f(x: 9, a) = -a) f1 (x) + af2 (x) (4.5)

with a=0.025. The symbol fl denotes a standard normal distribution and f2 denotes a normal

distibution with mean d in the interval [0, 5] and standard deviation 02 = 0.05. This density differs

from the density in (4.1) but maintains the concept of "near" point contamination. Because of the

similarity in the a-ICs for different values of a in both Figure I and Figure 2, a single value of a was

used here. Figure 3 shows the estimate of the a-IC for location and Figure 4 shows the estimate of the

a-IC for scale. The plots indicate that the contamination has the maximum influence on the MIDE

at about d = 3 and then decreases. The a-IC's for the IV, MEST and CVM estimators appear to reach
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an asymptote around d = 2. The implication is that the MEST and CVM would be more robust than

the MHDE against moderate contamination while the MHDE performs better near the true model, and

also when there are a few extremely wild points.

The robustness of the MHDE is displayed empirically in Figures 3 and 4 but is guaranteed

theoretically only when the sampled data is within a Hellinger neighborhood of the projection model

(Staudte, 1980). Using the normal mixture model (4.5), the Hellinger neighborhood, within which one

would expect the MHDE to be robust, is the region satisfying

] fI (X) [(1-a) fIx) + af2(x)] dx < a 2 /n (4.6)

The radius of the Hellinger neighborhood (largest shift possible in the mean, d, of f 2 while still

satisfying eq. 4.6) is given in Table 5 when n = 40 and a = 0.025 for different values of a2. The data

density used to generate the empirical a-IC displayed in Figures 3 and 4 is far outside the Hellinger

neighborhood. Thus, the MHDE exhibits robustness against alternatives which are outside a Hellinger

neighborhood.

Table . Hellinger Neighborhood Radius for the Mixture of Normals Model

0'2 LL. 0_o.9__ 0.8 0.7642 <0.7642

radius 0.3093 0.3022 0.1863 0.0000 none

In the examination of the robustness of the MHDE, we also considered three other simulation

models: the Student's t distribution with 2 and 4 degrees of freedom and the Laplace (Double

Exponential) distribution. Simulation comparisons for location efficiency with respect to the MLE for

these models are given in Table 6, using the format of Table 2, for sample sizes 20, 40, 100 and 400

based on 1000 replications. For these three models the MHDE is seen to be robust relative to the

MLE, but CVM, MEST (and often IV) obtain slightly higher efficiencies.

The maximum Hellinger distance between any two densities can be seen to be ,J, and the

Hellinger topology completely separates the sets of densities which are continuous from those which are

discrete in the sense that the Hellinger distance between a continuous density and a discrete density is

'f2. This prompted an examination of the performance of the MHDE when the sample data is

quantized. Tests were run on samples with sizes ranging from 20 to 800 where standard normal data
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was rounded to the nearest .01, .05, .1 and .2. The performance of the MHDE appeared to be

unaffected by the quantization. It appears that smoothing by the density estimator removes most of

the grouping effects induced by the quantization.

5. DISTRIBUTION OF THE TEST STATISTIC

Beran (1977b) suggested using the square of the minimized Hellinger distance, H , as a statistic

for testing the goodness-of-fit of the parametric family, in our case the two parameter normal. Beran

(1977b) showed that the limiting null distribution of H , using a sample of independent obeerv&tions of

size n, is normal with mean 3 Rn/ 2 0ncn and variance 167Rn/(3080n 2 cn), where Rn denotes the sample

range. His result is essentially based on the following major assumptions (Theorem 8, Beran 1977b):

1) the parameter space is a compact subset of Rp , 2) the support of the projection model is a closed

interval on the real line, and 3) the Epanechnikov kernel density estimator is used. The method of

proof for Beran's theorem does not extend to the situation where there is an infinite support for the

projection model density.

The limiting null distribution of H, under the above conditions, is shown by Eslinger (1983) to

be normal with mean [3Rn/(20ncn)] 1/ 2 and variance 167/(1848n). This result follows from an

application of Theorem A in Serfling (1980, p.118) to the distribution obtained by Beran. Beran

suggested using critical values obtained from the limiting null distribution of H2 for the small sample

test for normality when location and scale were unspecified. Actually, even the large sample results do

not apply in this situation since the support of the normal density is not a compact interval, and Beran

noted that the accuracy of this approximate application was not known. The small sample distribution

of H was studied by Eslinger (1983). Some small sample statistics from that study are reproduced in

Table 7 where it can be seen that the small sample statistics for H approach the values for normality

much faster than those of H2 . In the table the mean values are standardized by subtracting the

asymptotic mean using the expected sample range under normality, E(Rn), rather than Rn. Expected

sample ranges for normal samples have been tabled extensively by Pearson and Hartley (1958). They

also can be computed accurately using a FORTRAN algorithm such as the one given by Beasley and

Springer (1977). The standard deviation values are standardized by dividing by the asymptotic

standard deviation. The current results are slightly different from those shown in Table 7 because a

different bandwidth sequence has been selected.

We derived critical values empirically for testing the null hypothesis of normality using the

statistic H. The sequence cn given in (3.4) was used in this empirical study. The critical values

reported in this paper are inappropriate for other definitions of gn and f0. The critical values are
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presented in a computationally compact form and do not require extensively tabled values. The

method used to obtain the critical values was to generate 2000 sets of normal deviates for each of 20

distinct sample sizes in the range 20 to 1000, compute the statistic H, and then estimate the null

distribution percentiles for H from the sample percentiles. Three replications of 2000 sets using

different random sequences were made at each sample size, resulting in 60 percentile estimates for each

a. The sample percentiles were based on normal data computed using a linear congruential uniform

random number generator (multiplier of 16807 and modulus of 231 ) and a numerical inversion

procedure (Griffiths and Hill, 1985) to transform from the uniform distribution to the normal

distribution.

Values of the coefficients for a function that yields critical values for the statistic H as a

function of alpha level and sample size, n, are given in Table 8. The functional form used to obtain

the critical values is

Ha = (a1 + a 2 n a 3 ) / (b, + b2 n + b3 n b4)

A similar approach to obtaining critical values for goodness of fit statistics was reported by Stephens

(1974). The functional form used here is a modification of the form used by Stephens (1974) which

performed very well in our setting. For each a, the R2 value for fitting a curve of this type to the 60

percentile estimates was above .99. Also for each a, the fitted curve fell within the 95% confidence

interval of the corresponding percentile for all sample sizes. The a values are for the upper 100(1-a)

percentiles of the null distribution of H under normality. A one tailed test is appropriate for H since

large values of the test statistic indicate a poor match between the projection model and the

nonparametric density estimator. A test statistic value of 0 would indicate an exact fit by a member

of the projection model. The accuracy of the functional form has not been verified for sample sizes

over 1000.

Critical values could be obtained for larger sample sizes using the limiting null distribution of

H. The method is to employ the form of the limiting null distribution for H under the assumption that

the data come from a distribution which has a compact range, except that as in Table 7, the sample

range, Rn, is replaced by the expected sample range under normality. This approach yields critical

values which for sample sizes over 200 appear to be very similar to the empirically derived values. For

smaller sample sizes investigated in the range 20 - 200, there was up to a 5% difference in the critical

values given by the two methods. The true alpha level of the test using this approximation has not

been examined.
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6. POWER CONSIDERATIONS

Detectable Alternatives

Bickel (1978) examined the neighborhoods within which goodness-of-fit statistics do not have

detection capabilities. He showed that the Hellinger neighborhood was a subset of the neighborhood of

the Kolmogrov-Smirnov (K-S) statistic, indicating that the H test should detect a broader class of

model deviations than the K-S test. However, as mentioned in Section 1, Bickel also claims that a

goodness-of-fit test using the Hellinger distance does not have detecting power outside the Hellinger

neighborhood.

An indication of possible lower power of the MHDE compared to other statistics is that the

convergerce rate of the nonparametric density estimator to the true density under the Hellinger metric

is O(n 2 where A > 0 depends on the cn value used (Staudte, 1980). The convergence rate in

the Kolmogorov metric of the empirical distribution function to the true distribution function is1

O(n 2), so the K-S test converges slightly faster than the Hellinger metric test.

Staudte (1980) notes that the stronger the metric, the more sensitive the goodness-of-fit test based

on the metric. The Hellinger metric is stronger than all the other metrics currently used for goodness-

of-fit tests based on a minimum distance philosophy, indicating that the H statistic shouid provide a

powerful test.

Theoretical arguments do not give clear indication of the performance of H in comparison with

other goodness-of-fit statistics. The empirical studies which follow give an indication of the perfor-

mance of H in relation to other statistics, and also indicates how the convergence rate of the kernel

density estimator in the Hellinger metric effects the power of the test.

Comparisons With Other Statistics

The power of the H statistic when testing for normality was evaluated by comparing its

performance to the test statistics A2 (Anderson and Darling, 1952), R (Filliben, 1975), Cramer-von

Mises Minimum Distance W2 (discussed by Stephens, 1974) and, W (Shapiro and Wilk, 1965) as

extended to large samples by Royston (1982a, 1982b, 1983).

Eight alternative distributions were used for power comparisons. These distributions were a

subset of those used by Stephens (1974) and Filliben (1975) in empirical power studies of tests for

normality. The computational accuracy of the current study can be verified by comparing results with
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those of Stephens and Filliben. The alternative distributions are listed in Table 9, along with skewness,

v 31, and tail length, 32 and r 2 , measures. The tail length measure, r2 , is given by

r 2=(1-1/r,) .'5784 where

r= (G(.9975)-G(.oo25)) / (G(.975)-G(.o25))

and G(p) is the percent point function of the distribution (see Filliben, 1975).

Table 10 gives a comparison of the power of the tests for normality for the distributions given

in Table 9. The entry for each statistic and distribution is the number of rejections expressed as a

fraction. The fractions are based on 2000 replications at each sample size. The W statistic generally

had the highest power for most sample sizes for the alternatives which are shorter tailed than normal.

For the uniform distribution W performed best at all sample sizes. The H statistic gave the second

highest power in this case for n = 100, but its performance was somewhat below that associated with

the other statistics for n < 40. For the triangular distribution, the empirical power associated with all

of the statistics was low for n < 40. For n = 100, H had the second highest power, with the highest

power again being associated with W. When the alternative distributions were symmetric with longer

tails than the normal distribution, the R statistic generally had the highest power, with the power of

the H statistic being quite competitive with all of the statistics considered. For skewed alternatives,

the W' statistic generally performed slightly better than the other statistics. For the Weibull(2)

distribution the H statistic gave the lowest power for n < 40 but had the second highest power for n =

100. For n < 20 the H statistic had the smallest power for the exponential and chi-square(2)

alternatives. For n > 40, however, the power associated with H for these alternatives was at least .97.

In general, the H statistic gives results which are competitive with the other four statistics.

Beran (1977b) generated a realization of length n=40 from a N(0,1) distribution. He examined

the effect on the parameter estimates of varying one of the observations, X22. He also investigated the

sensitivity of his goodness-of-fit test based on H2 to variations in the one data value. We employed the

H statistic on Beran's data and for the original set of 40 observations, the H test had a value of 0.1217,

(we use a different cn value than Beran did) which was smaller than the upper 5 percent critical value

of 0.2106, indicating nonrejection of normality. None of the other four tests rejected the null

hypothesis of normality at this alpha level. When the value of X22 was changed from -0.0192038 to

10.0, the H test had a value of 0.1963, again indicating nonrejection of normality. However, all four of

the other tests rejected the null hypothesis of normality. These results are consistent with Beran's

iesults which led him to conclude that his test is insensitive to a few gross outliers.
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A more general situation was devised to test the sensitivity of H to a small percentage of gross

outliers. The test data used 1000 samples of size 100 from the normal mixture density with 100(1 -a)

percent from the standard normal density and 100oa percent from the normal density with mean 5.0

and unit variance, with the randomized a = 0.01. The empirical powers for the test statistics were

0.362 for A2 , 0.309 for W2 , 0.591 for R, 0.362 for H, and 0.458 for W. This case shows that the

statistic H can detect the situation where there are a few gross outliers, though with lower power than

two of the other statistics considered.

8. CONCLUSIONS

This article discusses a practical implementation of the minimum Hellinger distance estimator

suggested by Bei..n (1977b). The choice of a kernel density estimator was discussed and a practical

choice of bandwidth parameter was obtained. The computation time of the MHDE was shown to be

high for small samples, but better than competing robust estimators for samples sizes on the order of

several hundred. The MHDE was shown to be highly dependent on starting values, though the starting

values suggested by Beran resulted in convergence of the iterative procedure a high percentage of the

time. While calculation of the MHDE requires more computer time than the other robust estimators

considerd for smaller sample sizes, it is shown to be computationally faster than other robust

estimators for very large sample sizes primarily due to the fact that the MHDE requires only one pass

through the data.

The small sample distribution of the MHDE from the normal location-scale model was studied

empirically and compared to the small sample distribution of the maximum likelihood estimator. The

distribution of the MHDE appears to have uncorrelated location and scale estimates. There were no

models studied where the MHDE did not exhibit some robustness properties. When the sampled

densities had extremely heavy or extremely light tails, MEST and CVM generally had slightly higher

efficiency than the MHDE. Near the projection model the MHDE tended to dominate the other robust

estimators. It also dominated in the situation of a few extreme wild shots. The MHDE demonstrated

unexpected empirical robustness far outside Hellinger neighborhoods of the projection model.

Critical values have been obtained which allow use of the H statistic for testfug a null

hypothesis of normality, and a functional form for the critical values allows application for any sample

size. Computation of the H statistic requires the computation of the minimum Hellinger distance

estimates for location and scale. Once the estimation process is done, however, the value of H is

relatively easy to obtain. This two step procedure suggests a "natural" use for H in the setting of

minimum distance estimation. The H statistic is shown to provide a test for normality which is
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competitive with the tests based on the other test statistics considered especially when the sample size

is at least 40.

The H statistic was suggested by Beran (1977b) as a goodness-of-fit test which was insensitive

to a few gross outliers, hence providing a reasonable test to determine if a robust model for normality

was appropriate. The current study suggests that the H statistic is quite sensitive to model deviations

and therefore does not provide an answer to the question of the appropriateness of a robust model.
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Table 1. Cumulative Computation Times (sec) for 5000 Replications Using a
Sorted Data Set

Sample Size

Estimator 40 70 100 200 400 800

IV 6.7 17.6 34.2 130.6 521.9 2033.2
MLE .6 .7 .9 1.6 3.0 5.6
MHDE 449.0 440.2 444.7 461.1 504.9 557.3
CVM 83.5 127.8 172.6 319.0 608.1 1094.9
MEST 32.6 53.4 74.4 142.3 279.8 533.5



Table 2. Empirical Efficiency Under the Standard Normal Distribution

(Based on 5000 iterations)

Estimator

IV MHDE CVM MEST

Sample
Size Location

20 .692 (.011) .976 (.004) .915 (.007) .944 (.006)

40 .668 (.011) .982 (.004) .914 (.007) .950 (.006)

60 .648 (.011) .991 (.003) .923 (.008) .964 (.006)

i00 .650 (.011) .990 (.002) .915 (.007) .954 (.006)

200 .640 (.011) .991 (.003) .913 (.008) .958 (.006)

400 .638 (.011) .993 (.002) .913 (.008) .953 (.005)

700 .638 (.011) .990 (.002)

1000 .633 (.011) .990 (.002)

00 .637 1.000 .914 .953

Scale (Standard Deviation)

20 .399 (.008) .823 (.011) .632 (.011) .881 (.009)

40 .390 (.008) .902 (.009) .659 (.011) .891 (.009)

60 .392 (.009) .929 (.008) .669 (.012) .891 (.009)

100 .369 (.008) .933 (.007) .645 (.011) .879 (.009)

200 .367 (.008) .957 (.006) .647 (.011) .878 (.008)

400 .372 (.OGS) .970 (.005) .659 (.011) .898 (.009)

700 .371 (.008) .979 (.004)

1000 .371 (.008) .980 (.004)

00 1.000 .651

*** Unknown



Table 3. Empirical Comparison of MHDE and MLE Small Sample Distributions
for the Standard Normal Distribution Using 5000 Replications

Statistic
Sample
Size min max mean n*var skew kurt corr

MLE 1 -0.821 0.885 -0.0035 0.990 -0.017 3.059 0.011
s 0.439 1.540 0.9617 0.493 0.148 2.97320 MHDE 1 -0.807 0.881 -0.0040 1.015 -0.01C 3.047 0.014
s 0.200 1.694 0.9937 0.633 0.057 3.141

MLE 1 -0.586 0.588 0.0022 0.996 -0.027 2.897 -0.014
s 0.606 1.494 0.9827 0.506 0.059 2.976

40 MHDE 1 -0.593 0.615 0.0026 1.014 -0.025 2.985 -0.014
s 0.602 1.518 1.0018 0.574 0.037 2.981

MLE 1 -0.365 0.337 -0.0006 1.021 0.010 2.899 -0.01}
s 0.751 1.258 0.9921 0.492 0.114 2.979

100 MHDE 1 -0.367 0.336 -0.0007 1.031 0.005 2.882 -0.022
s 0.735 1.275 1.0006 0.534 0.099 3.020

MLE 1 -0.205 0.180 -0.0001 1.036 0.054 3.024 -0.005
s 0.875 1.142 0.9981 0.499 0.040 3.042

40 MHDE 1 -0.203 0.181 0.0000 1.044 0.057 3.007 -0.005
s 0.867 1.144 1.0001 0.516 0.031 3.058

1 denotes the location (mean) estimate
s denotes the scale (standard deviation) estimate



Table 4. Correlations Between Estimators for Sample Size 40.

Location

IV MLE MHDE CVM MEST
1.000 0.821 0.820 0.907 0.865

1.000 0.994 0.961 0.980
1.000 0.962 0.980

1.000 0.991
1.000

Scale

IV MLE MHDE CVM MEST
1.000 0.605 0.748 0.870 0.669

1.000 0.962 0.827 0.960
1.000 0.905 0.975

1.000 0.894
1.000



Table 6. Location Efficiency for the Normal Projection Mode
Data Distributions

Distribution
Sample
Size t2 t4 D.E.

IV 5.601 (1.135) 1.069 (0.047) 1.486 (0.064)
20 MHDE 4.778 (0.965) 1.220 (0.041) 1.122 (0.028)

CVM 5.681 (1.141) 1.314 (0.042) 1.410 (0.037)
MEST 5.268 (1.055) 1.304 (0.038) 1.333 (0.033)

IV 4.818 (0.731) 1.195 (0.060) 1.645 (0.116)
40 MHDE 4.434 (0.673) 1.241 (0.048) 1.152 (0.044)

CVM 5.340 (0.807) 1.416 (0.054) 1.525 (0.066)
MEST 4.994 (0.753) 1.378 (0.049) 1.381 (0.052)

IV 6.859 (1.124) 1.147 (0.047) 1.594 (0.109)
100 MHDE 5.645 (0.919) 1.252 (0.037) 1.130 (0.040)

CVM 7.322 (1.187) 1.419 (0.039) 1.535 (0.068)
MEST 6.685 (1.078) 1.379 (0.035) 1.421 (0.055)

IV 5.363 (0.413) 1.209 (0.050) 1.971 (0.122)
400 MHDE 4.370 (0.316) 1.226 (0.036) 1.167 (0.038)

CVM 5.717 (0.411) 1.468 (0.043) 1.613 (0.059)
MEST 5.222 (0.371) 1.418 (0.037) 1.452 (0.046)



Table 7. Empirical Small Sample Distribution Characteristics

Standardized Standardized

Statistic n Mean Stand. Dev. Skew Kurt E(Rn)

H1 20 - .01023 .79397 1.415 5.891 3.73495

112 20 - .00057 .33158 2.803 16.410

H1 40 - .00643 .79043 1.043 4.838 4.32156

H240 - .00040 .30869 2.202 12.733

If 100 -. 00122 .81866 .640 3.615 5.42909

112 100 .00033 .30812 1.387 6.483

F 400 .00215 .86490 .342 3.086 5.93636

i112 400 .00049 .32398 .840 3.992

H 000.0 1.0 0.0 3.0

H12 000.0 1.0 0.0 3.0



Table 8. Coefficients for Critical Values of H

al a2 a3 bl b2 b3 b4

0.150 0.5309 0.2292 0.6392 -0.7079 0.2602 1.3332 0.4614
0.100 0.1040 0.1807 0.6453 -2.1490 0,2134 1.2031 0.3668
0.075 0.2607 0.1923 0.6425 -1.9988 0.2177 1.2293 0.3900
0.050 0.8026 0.2309 0.5557 -1.0948 0.1070 1.2914 0.5361
0.025 0.6244 0.2116 0.5513 -1.8918 0.0954 1.2564 0.5018
0.020 0.6553 0.2121 0.5503 -1.8935 0.0942 1.2438 0.5014
0.010 0.7574 0.2108 0.5458 -1.9138 0.0868 1.2065 0.5048
0.005 0.7580 0.1406 0.4557 -1.9551 0.0251 1.3658 0.4257
0.001 0.6323 0.2288 0.5958 -2.5915 0.1396 0.9343 0.4913



Table 9

Alternative Distributions

Symmetric, shorter tailed than normal

d/3 r2

Uniform 0.0 1.800 .167

Triangular 0.0 2.400 .352

Symmetric, longer tailed than normal

,/ 1 02 72

Students t(4) 0.0 ---- .673

Students t(2) 0.0 ---- .810

Cauchy 0.0 ---- .941

Skewed, ordered .b pwer of

vol )32 r2

Weibull (2) .631 3.245 .464

Exponential 2.000 9.000 .579

Chi-Square (1) 2.828 15.000 .631



Table 10

Empirical Power for Alternative Distributions

Sample Size = 10

A2  w 2  R H W

Uniform .084 .078 .049 .053 .084

Triangular .045 .043 .036 .056 .041

Student's t(4) .131 .126 .155 .116 .140

Student's t(2) .315 .306 .349 .220 .318

Cauchy .627 .628 .642 .517 .613

Weibull (2) .088 .078 .086 .063 .089

Exponential .438 .410 .442 .282 .472

Chi-Square (1) .704 .674 .689 .552 .733

Sample Size 20

A 2  W 2  R H W

Uniform .184 .131 .062 .037 .188

Triangular .045 .038 .018 .027 .031

Student's t(4) .258 .224 .285 .220 .249

Student's t(2) .543 .502 .578 .465 .518

Cauchy .897 .882 .900 .857 .876

Weibull (2) .153 .121 .137 .101 .153

Exponential .796 .725 .789 .655 .836

Chi-Square (1) .975 .953 .974 .922 .984



Sample Size = 40

A2  w 2  R H W

Uniform .463 .336 .294 .147 .706

Triangular .047 .041 .013 .032 .063

Student's t(4) .354 .322 .464 .332 .336

Student's t(2) .789 .770 .826 .759 .747

Cauchy .988 .988 .989 .982 .978

Weibull (2) .262 .209 .290 .206 .340

Exponential .988 .966 .990 .970 .998

Chi-Square (1) 1.000 .999 1.000 .999 1.000

Sample Size = 100

A2  W2  R H W

Uniform .937 .835 .942 .993 1.000

Triangular .071 .062 .026 .105 .303

Student's t(4) .643 .601 .785 .627 .502

Student's t(2) .982 .976 .991 .980 .947

Cauchy 1.000 1.000 1.000 .998 1.000

Weibull (2) .591 .510 .687 .713 .825

Exponential 1.000 1.000 1.000 1.000 1.000

Chi-Square (1) 1.000 1.000 1.000 1.000 1.000
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